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Asymmetric synthesis of (R)- and (S)-2-
trifluoromethylepinephrineq
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Abstract—An asymmetric synthesis of (R)- and (S)-2-trifluoromethylepinephrine (1R and 1S) is presented. Trifluoromethylation
involves nucleophilic aromatic substitution of halobenzene 4 most likely via a copper mediated CF3 anion equivalent generated in
situ. The asymmetric step involves conversion of 3,4-dimethoxy-2-trifluoromethylbenzaldehyde (5) to silyl cyanohydrin (6R and 6S)
using a chiral salen catalyst in the presence of titanium. 1R and 1S are potential alternatives to currently used vasoconstrictors in
local anesthetic formulations.
Published by Elsevier Ltd.
We are interested in the effects of trifluoromethylation of
epinephrine, a phenethanolamine that functions as a
vasoconstrictor in certain amide based local-anesthetic
formulations and is known to degrade when the anes-
thetic is exposed to above ambient temperatures.1 In
general, fluorine modification of biologically relevant
molecules and the structure–activity relationships of
these analogues have generated considerable interest
among chemists. The perturbation of a biological mol-
ecule with a CF3 group is appealing to medicinal
chemists due to its relatively small size, strong electro-
negativity, and lipophilic nature.2 Recent trifluorome-
thylation methods involve nucleophilic attack of an
aldehyde or ketone using CF3 anion equivalents such
as trifluoromethyl(trimethyl)silane,3 trifluoroacetophe-
none,4 and the TMS ether adduct of a trifluoroacet-
amide.5

Despite the challenges of synthesizing organofluorine
compounds, the effects of fluorine substitution on the
physicochemical properties of biologically significant
compounds have been studied. Compounds that affect
the central nervous system such as antidepressants,
anorectic agents, and cardiostimulants have been mod-
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ified by fluorine in the form of a CF3 moiety, investi-
gated for biological activity and used in medical
applications.6 Kirk and co-workers have synthesized
mono- and difluoro analogues of phenethanolamines
and demonstrated a correlation between adrenergic
receptor affinity and the position of the fluorine atom on
the benzene ring.7;8

In our search for CF3 derivatives of epinephrine, we
sought a regiospecific method of introducing the CF3

group directly on the aromatic ring, a process that is not
trivial. Gaseous sulfur tetrafluoride treatment of benzoic
acid derivatives yielded a mixture of the corresponding
CF3 compounds and the acid fluoride.9 In the presence
of trifluoroacetic acid, xenon difluoride was also shown
to trifluoromethylate aromatic compounds with limited
regiospecificity.10 Aniline was trifluoromethylated on the
aromatic ring using S-(trifluoromethyl)dibenzothiophe-
nium salts, however, substitution occurred at numerous
positions and the trifluoromethylating agent had to be
prepared.11 To contrast, perfluoroalkyl metal com-
pounds containing copper, generated in situ, were
shown to readily convert halobenzene to a,a,a-trifluoro-
toluene.12;13 This method is regiospecific and likely in-
volves the in situ generation of CuCF3I anion using
copper(I) iodide in the presence of sodium trifluoroac-
etate and NMP at elevated temperatures.13 Herein, we
describe the asymmetric synthesis of 2-trifluoromethyl-
epinephrine (1R and 1S).

3,4-Dimethoxy-2-iodobenzaldehyde (4) was generated
by electrophilic aromatic substitution of isovanillin (2)
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in pyridine with iodine monochloride to form 3 followed
by methylation using dimethylsulfate (Scheme 1).14 In
a slight modification of a published procedure,
introduction of the trifluoromethyl moiety to form
3,4-dimethoxy-2-trifluoromethylbenzaldehyde (5) was
accomplished by heating an NMP solution of 4 with
sodium trifluoroacetate in the presence of CuI.14;15 Our
findings support Markovich et al. observation that the
reaction must be performed under extremely anhydrous
conditions due to the undesired formation of veratral-
dehyde. Upon heating for 4 h, the reaction mixture was
poured into water and the precipitate separated by
centrifugation. Extraction of the mother liquor with
hexane yielded 5 as a yellow oil in 25.1% yield.

The catalyst used for the asymmetric synthesis of 6 was
formed via addition of titanium tetraisopropoxide to a
CH2Cl2 solution of either (R,R) or (S,S)-N,N0-bis(3,5-di-
tert-butylsalicylidene)-1,2-cyclohexanediamine [(R,R) or
(S,S)-salen].7 The solution was kept under an atmo-
sphere of argon and stirred at room temperature for
1.5 h. Aldehyde 5 and TMSCN were added to the salen
catalyst at )50 �C and stirred at that temperature for
5 days.16 The solvent was removed in vacuo and the
crude silyl cyanohydrin purified via flash column chro-
matography (75:25 hex/EtOAc). Solid b-aminoethanol
7R [derived from (S,S)-salen] or 7S [derived from (R,R)-
salen] was formed via LiAlH4 reduction of 6R or 6S,
respectively, and analyzed for enantiomeric purity by
chiral HPLC. The ee of crude 7 was determined to be
I

XCF3

CF3 CF3

1R or 1S

2 3

6R or 6S

7R or 7S X = H

8R or 8S X = COH

9R or 9S X = Me

a

b

d

h

f

g

e

4 X = I

5 X = CF3

c

HO

MeO

HO

MeO

O

H

O

H

MeO

MeO

O

HMeO

MeO

CN

OTMS

MeO

MeO

NHX
OH

HO

HO

NHMe
OH

Scheme 1. Reagents and conditions: (a) ICl, pyridine, dioxane, 0 �C,
then rt, 69.3%; (b) dimethylsulfate, K2CO3, acetone, reflux 6 h, 72.2%;

(c) NaOCOCF3, CuI, NMP, 175 �C, 4 h, 25.1%; (d) (R,R) or (S,S)-

salen, Ti(O-iPr)4, CH2Cl2, TMSCN, )50 �C, 5 d, 76.6% for 6R, 75.1%

for 6S; (e) LiAlH4, diethylether, 0 �C, then rt, 52.8% for 7R, 53.2% for

7S; (f) ethyl formate, reflux 3 h; (g) LiAlH4, THF, 0 �C, then reflux,

20.8% 9R from 7R, 21.2% 9S from 7S; (h) BBr3, CH2Cl2, )78 �C, then
rt, 60.0% for 1R, 61.6% for 1S.
80% before recrystallization. Interestingly, an increase in
ee of either 7R or 7S in the mother liquor was observed
upon recrystallization from hex/EtOAc. Monomethyl-
ation of crude 7R or 7S using ethyl formate to form
formamide 8R or 8S17 followed by LiAlH4 reduction
yields 1-(3,4-dimethoxy-2-trifluoromethylphenyl)-2-
methylaminoethanol (9R or 9S, respectively) in >99% ee
after recrystallization from hex/EtOAc.18

De-O-methylation of 9R or 9S with excess boron tri-
bromide followed by MeOH quenching afforded the
crude 2-trifluoromethylepinephrine (1R or 1S).19 The
epinephrine derivatives were purified using reversed
phase semi-preparative HPLC on an Adsorbosphere
ODS column with a mobile phase of 95:5 water–aceto-
nitrile (both components contained 0.1% TFA v/v),
lyophilized and isolated as trifluoroacetate salts in >99%
ee. Both 1R and 1S are light green, deliquescent solids
that darken on exposure to atmosphere. We are cur-
rently investigating the receptor binding affinities and
biological functional assays of these novel epinephrine
derivatives.

1H, 13C, 19F NMR, HRMS, and melting points (where
applicable) for compounds 6R, 6S, 7R, 7S, 8R, 8S, 9R,
9S, 1R, and 1S are provided as supplementary material.
The supplementary data is available online with the
paper in ScienceDirect.
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1H NMR for 1R trifluoroacetate salt (300MHz, D2O, d)
7.12 (d, 1H, J ¼ 8.5Hz), 7.04 (d, 1H, J ¼ 8.5Hz), 5.30 (d,
1H, J ¼ 7.2Hz), 3.20–3.07 (m, 2H), 2.73 (s, 3H). 13C NMR
(75.6MHz, D2O, d) 163.1 (q, J ¼ 35Hz, trifluoroacetate),
145.5, 143.7, 130.3, 124.8 (q, J ¼ 275Hz), 119.2, 118.6,
116.5 (q, J ¼ 291Hz, trifluoroacetate), 114.4 (q,
J ¼ 29Hz), 64.9, 55.1, 33.0. 19F NMR (282.8MHz, D2O,
d) )53.0, )75.4 (trifluoroacetate). LCMS (APCI) m=z:
[M+H]þ 252. HRMS (ESI) calcd for [M+H]þ

C10H13F3NO3, 252.0848; Found 252.0849. tR
1R¼ 4.6min. ½a�25D )33.8 (c 2.1, H2O), mp¼ 61–63 �C.
1H NMR for 1S trifluoroacetate salt (300MHz, D2O, d)
7.17 (d, 1H, J ¼ 8.5Hz), 7.10 (d, 1H, J ¼ 8.5Hz), 5.33 (dd,
1H, J ¼ 2.2, 9.1Hz), 3.24–3.11 (m, 2H), 2.74 (s, 3H). 13C
NMR (75.6MHz, D2O, d) 163.2 (q, J ¼ 34Hz, trifluoro-
acetate), 145.5, 143.7, 130.3, 124.6 (q, J ¼ 275Hz), 119.3,
118.6, 116.6 (q, J ¼ 292Hz, trifluoroacetate), 114.4 (q,
J ¼ 29Hz), 65.0, 54.8, 33.0. 19F NMR (282.8MHz, D2O,
d) )53.2, )5.4 (trifluoroacetate). LCMS (APCI) m=z:
[M+H]þ 252. HRMS (ESI) calcd for [M+H]þ

C10H13F3NO3, 252.0848; Found 252.0852. tR 1S¼ 4.8min.
½a�25D +32.9 (c 2.2, H2O), mp¼ 61–66 �C.
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